INSTALLATION MANUAL

Variable Speed ECM Modular Multi-position Air Handlers Models: JMVT Series 208/230 V - Single-Phase and Three-Phase

Assembled at a facility with an ISO 9001:2015-certified Quality Management System

List of sections

General	Required control set-up	. 1
Safety 1		
Unit installation 4	Unit data	.10
Ductwork and connections 5	Maintenance	. 21
Electric heater installation	Air system adjustment	.2
Line power connections	Wiring diagram	. 23
Low voltage control connections	Start-up sheet	. 2

List of figures

Return air duct attachment and component location	Control wiring - premium ECM blower and HMH7 heat pump	9
Dimensions and duct connection dimensions	Control wiring - premium ECM blower and multi-stage AC	9
Typical installation	Control wiring - premium ECM blower and multi-stage heat pump .	. 10
Coil and air handler attachment details4	Control wiring - premium ECM blower and single-stage heat pump.	. 10
Duct system - modular blower - right hand4	Air handler with communicating AC or HP	. 10
Gasket location	Multi-wire terminal connection	. 11
Suspension support locations for horizontal applications	Variable speed board S1 jumper	. 11
- that require the drain pan extension6	DIP switch settings by model	. 15
- that do not require the drain pan extension 6	DIP-10	
Duct attachment	DIP-8	. 16
Ductwork transition	Variable speed board dip switch locations - heat kit	. 17
Line power connections7	Duct static measurements	. 21
Control board 8	Wiring diagram - ECM - single-phase heat kits	. 23
Cooling models with and without electric heat wiring 9	Wiring diagram - 8HK three-phase heat kits 208/230 V	

List of tables

Dimensions	. 3	Electrical heat: minimum fan CFM for three-phase heat kits 17
Low voltage connections	. 8	Electrical heat only: default fan speeds for FER compliance 18
Stage delay switches	. 9	Aux heat configuration - stage 1 kW dip switch settings18
Pushbutton operation		Application factors - rated CFM versus actual CFM
Fault codes		kW and MBH conversions - for total power input requirement 18
Fault list	13	Electric heat performance data: 208/230-1-60 and 208/230-3-60 18
Heat relays	15	Electrical data for single source power supply: 208/230-1-60 18
Continuous fan switches	16	Electrical data for multi-source power supply: 208/230-1-60 19
Comfort setting selection	16	Electrical data for single source power supply: 208/230-3-60 19
Physical and electrical data - cooling only	16	Electrical data for multi-source power supply: 208/230-3-60 20
Electrical data - cooling only	17	Aux heat configuration - heat kit selection
Electrical heat: minimum fan CFM DIP switch settings		Airflow data (CFM)
for single-phase heat kits	17	

Section I: General

The modular air handler series provides the flexibility for installation in any position. This unit may be used for upflow, downflow, horizontal right, or horizontal left applications.

These units may be located in a closet, utility room, attic, crawl space, or basement. These versatile models may be used for cooling or heat pump operation with or without electric heat or indoor coil.

Top or side power and control wiring, color coded leads for control wiring, easy to install drain connections, and electric heaters all combine to make the installation easy and minimize installation cost.

Electric heat kits are available as field installed accessories. Single-phase kits are available from 2.5 kW to 25 kW. 208/230V three-phase kits are available from 10 kW to 25 kW.

Section II: Safety

This is a safety alert symbol. When you see this symbol on labels or in manuals, be alert to the potential for personal injury.

Understand and pay particular attention to the signal words **DANGER**, **WARNING**, or **CAUTION**.

DANGER indicates an **imminently** hazardous situation, which, if not avoided, **will result in death or serious injury**.

WARNING indicates a **potentially** hazardous situation, which, if not avoided, <u>could result in death or serious injury</u>.

CAUTION indicates a **potentially** hazardous situation, which, if not avoided <u>may result in minor or moderate injury.</u> It is also used to alert against unsafe practices and hazards involving only property damage.

A WARNING

FIRE OR ELECTRICAL HAZARD

Failure to follow the safety warnings exactly could result in serious injury, death or property damage. A fire or electrical hazard may result causing property damage, personal injury or loss of life.

A WARNING

The air handler area must <u>not</u> be used as a broom closet or for any other storage purposes, as a fire hazard may be created. Never store items such as the following on, near or in contact with the furnace.

- Spray or aerosol cans, rags, brooms, dust mops, vacuum cleaners or other cleaning tools.
- Soap powders, bleaches, waxes or other Cleaning compounds; plastic items or containers; gasoline, kerosene, cigarette lighter fluid, dry cleaning fluids or other volatile fluid.
- 3. Paint thinners and other painting compounds.
- 4. Paper bags, boxes or other paper products.

Never operate the air handler with the blower door removed. To do so could result in serious personal injury and/or equipment damage.

A WARNING

This appliance is not intended for use by persons (including children) with reduced physical, sensory or mental capabilities, or lack of experience and knowledge, unless they have been given supervision or instruction concerning use of the appliance by a person responsible for their safety.

Children should be supervised to ensure that they do not play with the appliance.

A WARNING

Improper installation, adjustment, alteration, or maintenance may create a condition where the operation of the product could cause personal injury or property damage. Refer to this manual for assistance, or for additional information, consult a qualified contractor, installer, or service agency.

A CAUTION

This product must be installed in strict compliance with the installation instructions and any applicable local, state, and national codes including, but not limited to building, electrical, and mechanical codes.

NOTICE

To ensure a correct match for this indoor product, refer to the current *Tabular Data Sheet* for the outdoor equipment selected for the system application. If the indoor product model is not listed in the *Tabular Data Sheet* included with the outdoor unit, to access the current version of the *Tabular Data Sheet*, go to the *Residential Equipment & Supplies* section of the Offering Catalog at

www.simplygettingthejobdone.com or scan the QR code provided on the outdoor unit rating plate.

Safety requirements

- Failure to carefully read and follow all instructions in this manual can result in air handler malfunction, death, personal injury, or property damage.
- Always install this air handler in accordance with all national and local building and safety codes and requirements, local plumbing or wastewater codes, and other applicable codes.
- 3. Only install this air handler in a location and position specified in the *Unit installation*.
- Do not use the air handler for temporary heating of buildings or structures under construction.
- Always install the air handler to operate within the air handler's intended maximum outlet air temperature.
- Clearance from combustible material is provided under Clearances in Unit installation.
- The unit rating plate displays the air handler model number. The unit dimensions for the supply air plenum are provided in Figure 2 and Table 1. Always install the plenum according to the instructions.

A CAUTION

Do not lift the air handler by the cabinet braces. The cabinet braces could become disengaged from the cabinet causing the air handler to fall, potentially causing injury or damaging property. See **Figure 1** for the location of the cabinet braces. Lift the air handler by tightly gripping the casing.

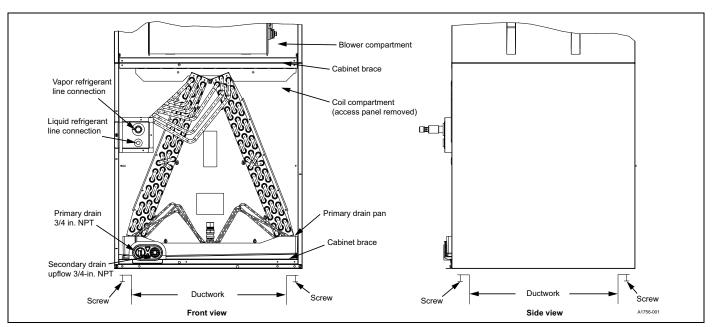


Figure 1: Return air duct attachment and component location

- It is necessary to maintain clearances for servicing and allow access to the electric heaters and blower.
- It is necessary to verify the unit rating plate and power supply to ensure that the electrical characteristics match.
- 10. When attaching ductwork with screws, carefully fasten the screws and keep them within 5/8 in. of the sides and back of the air handler.
- Install the air handler so the electrical components are protected from water
- 12. Installing and servicing heating and cooling equipment can be hazardous due to the electrical components. Only trained and licensed personnel must install, repair, or service heating and cooling equipment. Unlicensed service personnel can perform basic maintenance functions such as cleaning and replacing the air filters. When working on heating and cooling equipment, the precautions in the manuals and on the labels attached to the unit and other safety precautions must be observed as applicable.

A CAUTION

These air handlers must be transported and handled in an upright, upflow position. Failure to do so may result in unit damage and personal injury. Configuration conversions must be done at the site of installation

- 13. These instructions cover minimum requirements and conform to existing national standards and safety codes. In some instances, these instructions exceed certain local codes and ordinances, especially those who have not kept up with changing residential and non-HUD modular home construction practices. These instructions are required as a minimum for a safe installation.
- 14. These models are not CSA listed or approved for installation into a HUD-approved modular home or a manufactured (mobile) home.

Inspection

Upon receiving the air handler, inspect for possible damage during transit. If damage is evident, note the extent of the damage on the carrier's freight bill. A separate request for inspection by the carrier's agent must be made in writing. Consult the local distributor for more information.

Before installation, check the unit for screws or bolts loosened in transit. There are no internal shipping or spacer brackets that need removing. You must verify that all accessories, such as heater kits and coils, are available. Complete installation of these accessories or field conversion of the unit before setting the unit in place or connecting any wiring, ductwork, or piping.

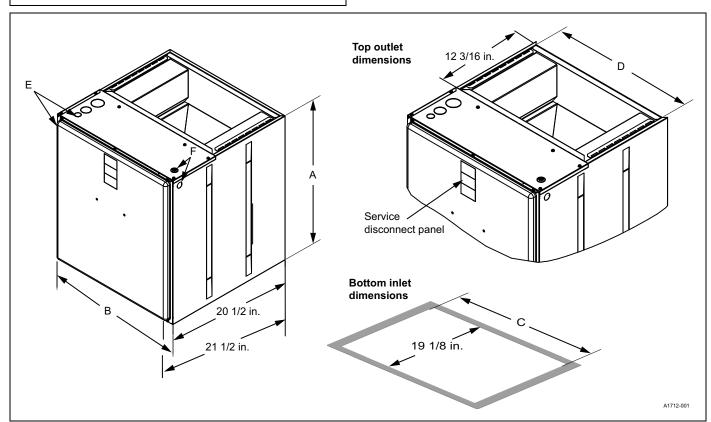


Figure 2: Dimensions and duct connection dimensions

Table 1: Dimensions¹

		Dime		Wiring kn	ockouts ²	
Models	Α	В	С	D	E	F
	Height (in.)	Width (in.)	Opening v	vidths (in.)	Power (in.)	Control (in.)
JMVT 12B	22 3/4	17 1/2	16 1/2	16 1/2	7/8 (1/2)	
JMVT 16C	22 3/4	21	20	20	1 3/8 (1)	7/8 (1/2)
JMVT17C	22 3/4	21	20	20	1 23/32 (1 1/4)	110 (112)
JMVT 20D	22 3/4	24 1/2	23 1/2	23 1/2	1 23/32 (1 1/4)	

All dimensions are in inches.
 Actual size (conduit size)

Section III: Unit installation

NOTICE

Avoid handling aluminum coil components after handling the copper refrigeration piping or other tubing without first cleaning hands.

Unit sizing

- The size of the unit must be based on an acceptable heat loss or gain calculation for the structure. Use Air Conditioning Contractors of America (ACCA) Manual J or another approved method.
- Only connect the air handler to a duct system that has an external static pressure within the allowable range.
- Airflow must be within the minimum and maximum limits approved for electric heat, indoor coils, and outdoor units.

Entering air temperature limits				
Wet bulb ter	nperature (°F)	Dry bulb tem	perature (°F)	
Minimum	Maximum	Minimum	Maximum	
57	72	65	95	

- When an air handler is installed so that supply ducts carry air circulated by the air handler to areas outside the space containing the air handler, the return air is also handled by one or more ducts sealed to the air handler casing and terminating in the space to be cooled or heated.
- Refer to the unit rating plate for the air handler model number and then see the dimensions page of this manual for supply air plenum dimensions. The plenum must be installed according to the instructions.
- The installer must check available supply power and verify that it is within the normal operating voltage range for the unit. The acceptable voltage range for these units is as follows:

Air handler voltage	Normal operating ¹ voltage range
208/230-1-60	187 V to 253 V

1. Rated in accordance with ARI Standard 110, utilization range A.

Clearances

It is essential to provide the following clearances:

- Maintenance and servicing access minimum 36 in. from the front of the unit for blower motor
- The supply air ductwork connected to this unit is designed for 1 in. clearance for the first 18 in. of duct length to combustible materials.
- A combustible floor base accessory is available for downflow applications of this unit, if required by local code.

Location

Location is usually predetermined. Check with the owner's or dealer's installation plans. If location has not been decided, consider the following in choosing a suitable location:

- Select a location with adequate structural support, space for service access, and clearance for air return and supply duct connections.
- Do not use hanging brackets to wall mount this single piece air handler unit.
- Normal operating sound levels may be objectionable if the air handler is placed directly over some rooms such as bedrooms or a study.
- When installing an indoor coil in an attic or above a finished ceiling, an auxiliary drain pan must be provided under the air handler as is specified by most local building codes.
- · A sufficient electrical supply must be available.
- If locating the unit in an area of high humidity, such as an unconditioned garage or attic, nuisance sweating of the casing may occur. On these installations, completely seal the unit duct connections and other openings, and use a wrap of 2 in. fiberglass insulation with vinyl vapor barrier.

Air handler configuration

These air handler units are ready to install in any position shown in **Figure 3**. Some XAH model coils require a section of duct between the indoor coil and the modular air handler. See *Horizontal right applications*.

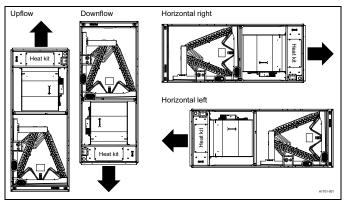


Figure 3: Typical installation

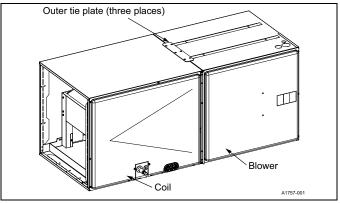


Figure 4: Coil and air handler attachment details

Horizontal right applications

An pan extension to reduce the risk of condensate blow-off is provided with certain models of XAH indoor coils. It is essential to construct, insulate, and attach a 6 in. long duct extension between the XAH coil casing and the modular air handler casing to allow enough room to install the pan extension. The suggested method is as follows:

Note: This method consists of two identical field fabricated duct sections.

- 1. Attach one duct section to the leaving air end of the XAH indoor coil.
- Attach the other duct section to the entering air end of the modular air handler.
- Attach the two sections together using s-lock and drive cleats. See Figure 5.

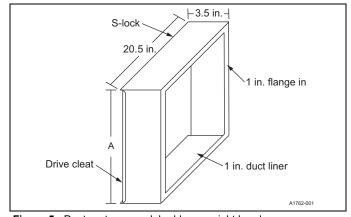


Figure 5: Duct system - modular blower - right hand

Note: A = modular air handler width (see column B in Table 1)

Air handler and coil upflow, downflow, and horizontal positions where not using a pan extension

- 1. Apply the neoprene gasket to the return air end of the air handler.
- Attach three tie plates to the external sides and back of the air handler casing using screws. See Figure 4.
- Position the air handler casing over the appropriate coil opening (depending on configuration). See Figure 3.
- Attach the three tie plates to the coil casing using screws. See Figure 4.
- 5. Remove the coil access panel.
- 6. Slide the coil out of the coil cabinet and set the coil to the side.
- 7. Locate the 2 in. wide foam gasket.
- 8. Apply the foam gasket over the air handler and coil mating seams on the interior of both unit sides and back.
- Slide the coil into the housing and install the coil access panel and coil filter door.

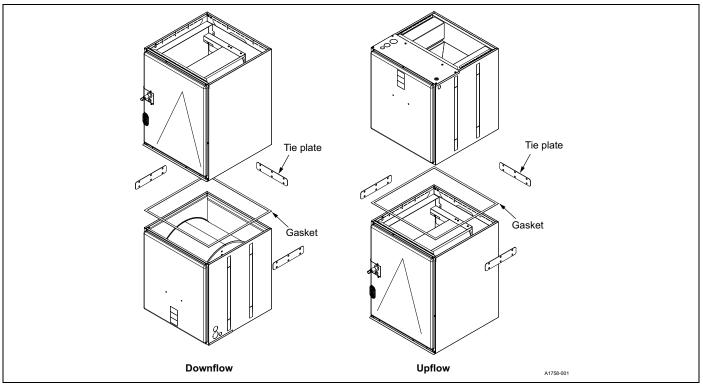


Figure 6: Gasket location

Section IV: Ductwork and connections

Air supply and return may be handled in one of several ways best suited to the installation. Upflow, horizontal, or downflow applications may be used.

The vast majority of problems encountered with heating and cooling systems can be linked to incorrectly designed or installed duct systems. It is therefore highly important to the success of an installation that the duct system be correctly designed and installed.

When installing a central air return grille in or near the living space, design the ductwork so that the grille is not in direct line with the opening in the unit. One or two elbows and acoustical duct liner assure a quieter system. For operation where the return air duct is short or where sound may be a problem, use acoustical duct liner inside the duct. Use flexible duct connectors to minimize the transmission of vibration and noise into the conditioned space.

A WARNING

Do not bring in return air from a location which could introduce hazardous substances into the airflow.

Use 1/2 in. screws to connect ductwork to the cabinet. If pilot holes are drilled, drill only through the field duct and the unit flange.

Insulation of ductwork is a must where it runs through an unheated space during the heating season or through an uncooled space during the cooling season.

Use a vapor barrier to prevent absorption of moisture from the surrounding air into the insulation.

Use a transition to match unit opening to correctly size the supply air duct. Suspend all ducts using flexible hangers and never fasten directly to the structure.

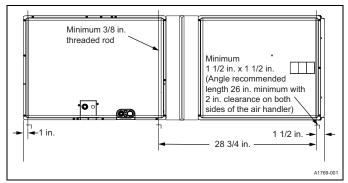
A CAUTION

This unit is not designed for non-ducted (freeblow) applications. Do not operate without ductwork attached to the unit. $\frac{1}{2} \int_{\mathbb{R}^{n}} \frac{1}{2} \left(\frac{1}{2} \int_{\mathbb{R}^{n}} \frac{1}{2} \left(\frac{1$

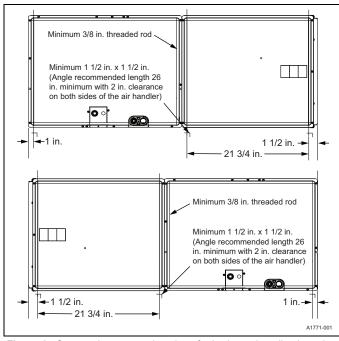
Never operate the equipment without filters.

Ductwork must be fabricated and installed in accordance with local and/ or national codes. This includes the standards of the National Fire Protection Association for Installation of Air-Conditioning and Ventilating Systems, NFPA No. 90B. If using electric heat, non-flammable material must be used. Duct systems must be designed in accordance with ACCA Manual D.

Horizontal suspension


These air handlers may be suspended in horizontal applications. Use angle steel support brackets with minimum 3/8 in. threaded rods, supporting the unit from the bottom. Attach the threaded rods at the locations shown in **Figure 7**, leaving enough clearance between the door and the rod so that doors can be easily removed for service.

A CAUTION


Do not lift the air handler by the cabinet brace. The cabinet brace is held in place by the coil channel. The cabinet brace could become disengaged from the cabinet causing the air handler to fall, potentially causing injury or damaging property. See **Figure 1** for the location of the cabinet braces.

NOTICE

When assembling the support structure, size to provide clearance for access door removal.

Figure 7: Suspension support locations for horizontal applications that require the drain pan extension

Figure 8: Suspension support locations for horizontal applications that do not require the drain pan extension

Note: Applications shown are with XAH indoor coils that do not contain a horizontal right hand extension pan.

Duct flanges

Duct flanges are integrated into the casing. Fold the flanges into position and use screws to anchor the flanges.

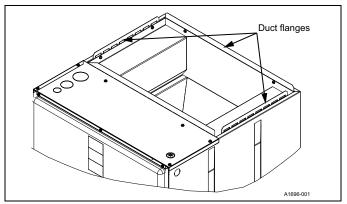


Figure 9: Duct attachment

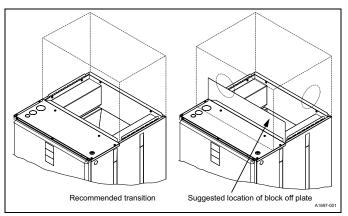


Figure 10: Ductwork transition

Unit connections

There are several ways to handle the supply and return air duct connections. The location and sizing of the connections depends on the situation and the method best suited to the installation. Upflow, horizontal or downflow applications may be used.

Use a transition to match unit opening to correctly size the supply air duct. See **Table 1** for air handler unit inlet and outlet dimensions.

A CAUTION

Use 1/2 in. screws to connect ductwork to the unit. Longer screws may pierce the drain pan and cause leakage. If drilling pilot holes, drill only though the field duct and the unit bottom duct flange.

Ductwork that is not designed to match the supply air opening can cause turbulence inside the plenum. This turbulence can change the airflow patterns across the electric heater limit switch/switches. If the factory suggested transition cannot be fabricated, attach a block off plate (approximately 8 in. high and running the full width of the plenum) to the supply opening. See **Figure 10**. The use of this block off plate enables better air circulation across the limit switches.

Air filters

A CAUTION

Never operate the equipment without filters.

Return air filters are required and must be field supplied. Filtration can be accomplished external to the unit or the integral filter rack may be used. A 1 in. filter access rack is built into the unit. Remove the filter access cover and install the correct size filter. Use a standard 1 in. permanent or throw away filter. See **Table 10** for filter sizes.

Section V: Electric heater installation

If the air handler requires electric heat, install the electric heat kit according to the installation instructions included with the kit. After installing the kit, mark the air handler nameplate to designate the heater kit that was installed. If no heater is installed, mark the name plate appropriately to indicate that no heat kit is installed.

Use only 8HK heater kits, as listed on the air handler name plate and in these instructions. Use data from **Table 12** to **Table 23** for information on the required minimum motor speed tap to use for heating operation and the maximum over-current protection device required as listed for combination of air handler and heater kit.

For all applications, the kits can be installed without modification.

NOTICE

In some horizontal applications, the service disconnects on the electric heat kits must be rotated 180° so the up position of the disconnect is the ON position. This service disconnect orientation change is required by UL 60335-2-40 (in reference to all circuit breakers).

Section VI: Line power connections

A WARNING

Before obtaining access to terminals, all supply circuits must be disconnected.

A WARNING

A fused disconnect switch must be field provided for the unit to be in compliance with UL 60335-2-40 Clause 7.12.2.

Power can be brought into the unit through the supply air end of the unit (top left when unit is vertical) or the left side panel. Use the hole appropriate to the unit's orientation in each installation to bring the conduit from the disconnect. The power lead conduit must be terminated at the electrical control box. See **Table 11** and **Table 19** to **Table 23**, and the latest edition of the National Electric Code, or in Canada the Canadian electrical Code, and local codes to determine correct wire sizing. To minimize air leakage, seal the wiring entry point on the outside of the unit

All electrical connections to air handlers must be made with copper conductors. **Direct connection of aluminum wiring to air handlers is not approved.**

If aluminum conductors are present, all applicable local and national codes must be followed when converting from aluminum to copper conductors prior to connection to the air handler.

The chosen conductor and connections must all meet or exceed the amperage rating of the overcurrent protector (service disconnect or fuse) in the circuit.

Existing aluminum wire within the structure must be sized correctly for the application according to the National Electric Code and local codes. Use caution when sizing aluminum rather than copper conductors, as aluminum conductors are rated for less current than copper conductors of the same size.

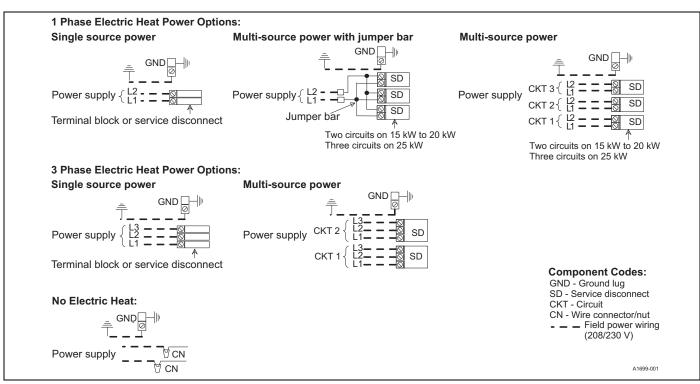


Figure 11: Line power connections

Section VII: Low voltage control connections

The 24 V power supply is provided by an internally wired low voltage transformer that is standard on all models. If connecting the unit to a 208 V power supply, the low voltage transformer must be rewired to the 208 V tap. See the **Wiring diagram**.

Field supplied low voltage wiring can exit the unit through the top right (when the unit is vertical upflow) or the right side panel. See **Figure 2**.

Remove the knockout and pierce the foil faced insulation to allow wiring to pass through. Use as small of a hole as possible to minimize air leakage. Install a 7/8 in. plastic bushing in the selected hole and keep low voltage wiring as short as possible inside the control box.

To further minimize air leakage, seal the wiring entry point at the outside of the unit. Connect the field wiring at the pigtails supplied with the air handler. See **Figure 13** to **Figure 19** for low voltage system wiring.

NOTICE

All wiring must comply with local and national electrical code requirements. Read and heed all unit caution labels.

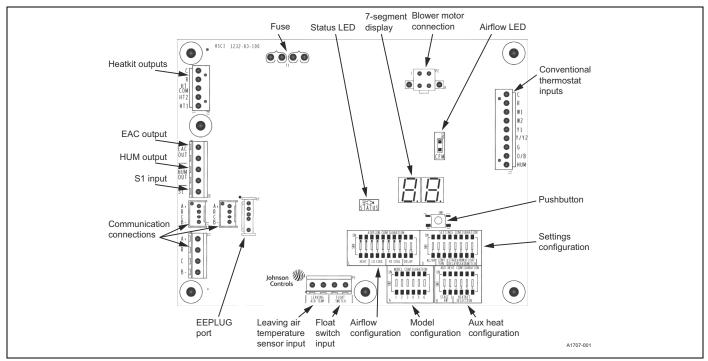


Figure 12: Control board

Humidity switch input

The air handler control is designed to work with a humidity control that closes when the humidity is below the set-point. The control is open when the humidity is above the set-point. This humidity control may be referred to as a humidistat or a dehumidistat.

The humidity switch controls dehumidification operation of the control during cooling operation. The humidity switch must be connected to the HUM wire of the control. See **Figure 13** to **Figure 17**.

To enable the dehumidification feature operation, change the HUMIDI-STAT dip switch to the 1 (ON) position.

NOTICE

All wiring must comply with local and national electrical code requirements. Read and heed all unit caution labels.

It is possible to vary the amount of electric heat turned on during the defrost cycle of a heat pump. Standard wiring only brings on the first stage of electric heat during defrost. See *Heat output* and **Table 7** for additional information on heat during the defrost cycle.

Table 2: Low voltage connections

Wire	Colors	Signals	Comment
R	Red	24 VAC power (fused)	
G	Green	Continuous fan operation	Fan speed, adjust at CONT FAN dip switch (SW5)
Y/Y2	Yellow	Second or full stage compressor operation	
Y1	Yellow and Black	First stage compressor operation	Not used with outdoor units having single-stage compressors.
W2	Brown	Second stage heat operation	
W1	White	First stage heat operation	
O/B	Orange	Reversing valve operation	
EAC	Field-supplied wiring	Electric air cleaner	Located on P4 connector. There is 24 VAC output during indoor blower operation to energize a pilot duty relay for an electronic air cleaner.
HUM	Purple	Humidity switch input	
C (COM)	Blue	24 VAC common	
S1	Field-supplied wiring	Reduce airflow and set S1 functionality	Used only with outdoor units with an S1 out.

Note: Connect the field wiring at the pigtails supplied with the control board harness.

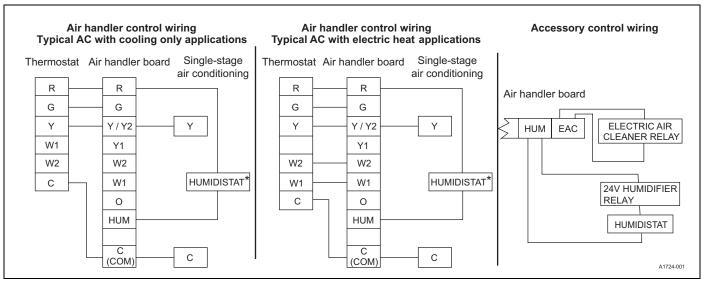


Figure 13: Cooling models with and without electric heat wiring

Notes:

- 1. The Y/Y2 thermostat wire must be connected for full CFM and applications requiring 60 s blower off delay for SEER enhancement.
- 2. If a humidistat is connected to the HUM input, change the HUMIDISTAT dip switch to the 1 (ON) position.
- 3. The control is factory set for HP applications. For AC applications, change the AC/HP dip switch to the 1 (ON) position.
- 4. Air handler control wiring only: Optional dehumidification humidistat switch contacts open on humidity rise.

Single-stage thermostat

Stage delay:

For conventionally wired systems, it is possible to use a single-stage thermostat even if the air handler is equipped with a multi-stage accessory electric heat kit. Adjust the stage delay dip switch settings to allow a W2 heat kit output when a W1 input is present after a 10 min, 15 min, or 20 min delay. See **Table 3**.

Table 3: Stage delay switches

Stage delay	Time (min)
00	Disabled
01	10
10	15
11	20

NOTICE

For Figure 14:

Room thermostat reversing valve operation must be set to **B** - energize during heating operation.

S1 mode must be enabled for correct operation. Refer to the required control set up section in the unit *Installation Manual*.

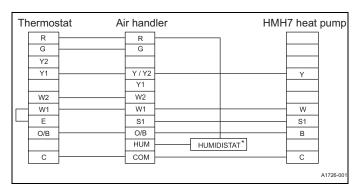


Figure 14: Control wiring - premium ECM blower and HMH7 heat pump - conventional wiring

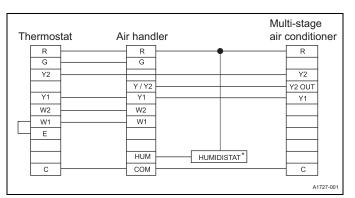


Figure 15: Control wiring - premium ECM blower and multi-stage air conditioner - conventional wiring

NOTICE

For Figure 16:

Do not bond any of the outdoor unit W wires together.

W2 OUT is only required for heat kits with multiple stages of electric heat. Refer to the wiring diagram for the heat kit used to determine stages of heat.

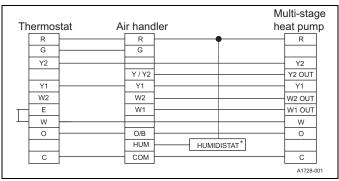
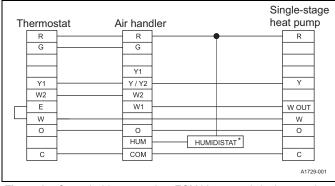



Figure 16: Control wiring - premium ECM blower and multi-stage heat pump - conventional wiring

Figure 17: Control wiring - premium ECM blower and single-stage heat pump - conventional wiring

Notes:

- 1. The Y/Y2 thermostat wire must be connected for full CFM and applications requiring 60 s blower off delay for SEER enhancement.
- 2. If a humidistat is connected to the HUM input, change the HUMIDISTAT dip switch to the 1 (ON) position.
- 3. The control is factory set for HP applications. For AC applications, change the AC/HP dip switch to the 1 (ON) position.
- 4. Air handler control wiring only: Optional dehumidification humidistat switch contacts open on humidity rise.

Control wiring using communicating controls

The communicating system consists of several intelligent communicating components, including the communicating thermostat control (touch-screen wall thermostat), variable speed air conditioner or heat pump (21 SEER), or two-stage air conditioner or heat pump (19 SEER), that continually communicate with each other using a four-wire connection called the A-R-C-B bus. Commands, operating conditions, and other data pass continually between components over the A-R-C-B bus. See **Figure 18**. The result is a new level of comfort, versatility, and simplicity.

In order to use this air handler in full communications (COMM) mode, it is essential to install it with the matching touch-screen communicating control (wall thermostat) and an outdoor air conditioner or heat pump with a fully communicating control.

Another option is to use this air handler along with the touch-screen communicating control and a non-communicating outdoor air conditioner through the addition of a communicating AC control board to the outdoor unit. This system allows full communication between the air handler, outdoor unit, and touch-screen communication control.

Use the wiring diagram in **Figure 18** to connect the air handler control, touch-screen communicating control (wall thermostat), and communicating outdoor unit. Ensure all of the A+ terminals are connected together, all of the B- terminals are connected together, all of the C terminals are connected together, and all of the R terminals are connected together. See **Figure 18** and **Figure 19**. When using a fully communicating system, remove the low voltage signal connector from the control board at the T3 connection and leave the low voltage wiring in place for future use. Use the four small screw terminals (ARCB connection) on the terminal block on the end of the air handler control.

A CAUTION

If connecting any field-supplied wiring to the control board, such as when using the communicating control, float switch, or leaving air temperature switch, you must route the additional wires through the hole at the lower right of the control box.

Do not add any additional holes to the control box. After attaching the additional wires to the board, it is essential to plug the remaining hole around the wires with the sealant putty supplied or with a suitable waterproof sealant. Failure to seal this hole may allow moisture to enter the control box and damage the control board.

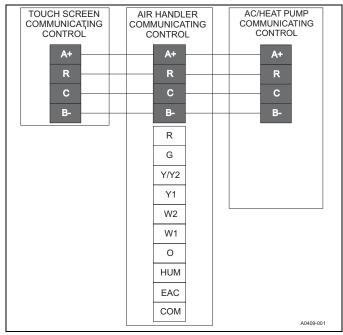


Figure 18: Air handler with communicating AC or HP

Important: Do not place more than one wire under any single communication terminal screw (there are four communication terminal screws). If more than one wire must be connected to a terminal screw, attach only the terminal end of a one wire pigtail no longer than 6 in. and use a wire connector to connect the other end of the pigtail to the other wires. Failure to do this may result in nuisance communication error faults. See **Figure 19**.

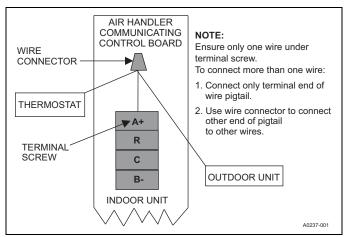


Figure 19: Multi-wire terminal connection

Float switch input

An optional switch may be connected to the FLOAT SWITCH INPUT terminals on the control board. **This feature is only functional when used with the communicating control**. It is intended for use with a water overflow switch. To enable this feature, see dip switches 7 and 8 in switch bank SW5. An OFF/OFF (0, 0) position ignores this input. If using a normally closed switch, set these switches in the OFF/ON (0, 1) position. If using a normally open switch, set these switches in the ON/OFF (1, 0) position. At the room thermostat system settings menu, the FLOAT SWITCH setting must be changed from its default (Disabled) setting. If using a normally closed switch, choose Enabled (Open). If using a normally open switch, choose Enabled (Closed).

When finished installing condensate overflow detection and on a regular basis after installation, test the detection equipment to ensure correct operation.

A CAUTION

Failure to test condensate overflow detection equipment could lead to equipment failure and damage.

Leaving air temperature sensor input

A plenum air temperature sensor (thermistor) can be connected to the LEAVING AIR TEMP SENSOR terminals on the control board. The communicating control can then monitor the temperature of the supply air in the plenum.

S1 HMH7 input: The S1 output from an HMH7 model horizontal discharge heat pump must be connected to the S1 input terminal on the board. Use this input to make the air handler compatible with an HMH7 horizontal discharge heat pump unit without the need for any additional relays. The air handler control must be put into S1 mode before field thermostat wiring. See Functionality and operation for detailed instructions.

Section VIII: Required control set-up

Important: The following steps must be taken at the time of installation to ensure correct system operation.

- Consult system wiring diagram to determine correct thermostat wiring for your system.
- If using a communicating control or a humidistat for dehumidification control is installed, change the HUMIDISTAT switch from OFF to ON.
- 3. Set the AC/HP switch to ON for air conditioner or OFF for heat
- 4. Set the airflow and comfort setting switches to the correct positions.
- 5. If using an HMH7 horizontal discharge heat pump, follow the *Pushbutton Operation* chart in **Table 4** to set up S1 functionality.

Functionality and operation

Switch positions

S1 functionality - HMH7 operation

The S1 terminal connects the air handler and the HMH7 horizontal discharge unit. When S1 functionality is enabled (see **Table 4**), the system operates the indoor blower to better take advantage of the modulating features of the HMH7 unit, as well as changing the reversing valve logic to operate with a call for heating. It is essential to enable S1 functionality for the air handler to operate correctly with an HMH7 horizontal discharge heat pump.

To enable S1 mode, with the power off and no field thermostat wires connected to the air handler control board, complete the following steps:

- Set all configuration jumper settings such as heat, cool, AC/HP, continuous fan speed, and heat kit selection to the appropriate positions
- 2. Place a wire jumper from the R terminal on the communicating wiring connection to the S1 input as shown in **Figure 20**.
- 3. Apply power to the air handler.
- 4. When the control is in standby mode, push and hold the pushbutton located below the 7-segment display for more than 6 s, then release the pushbutton. The 7-segment display should display S1.
- Remove power from the air handler and field-installed jumper wire.To take the unit control out of S1 mode, without any active faults present

To take the unit control out of S1 mode, without any active faults present and no 24 VAC input on the S1 terminal, push and hold the pushbutton for more than 6 s and release.

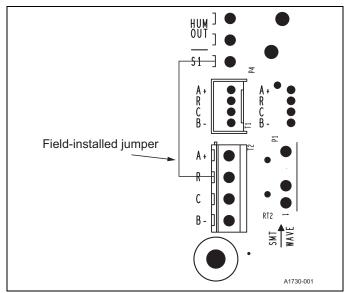


Figure 20: Variable speed board S1 jumper

Pushbutton operation

See **Table 4** for the control behavior when the pushbutton is pressed.

HUMIDISTAT switch

The HUMIDISTAT switch configures the control to monitor the humidity switch input. With the switch in the OFF position, the control ignores the HUM input. With the switch in the ON position, the control monitors the HUM input to control the blower speed for dehumidification during cooling operation. For conventionally wired systems, an open-on-rise humidistat is wired between air handler board R and HUM input to utilize this feature. The HUM input is strictly for dehumidification during cooling operation and has no control over the HUM OUT humidifier connections. To enable this feature for communicating systems, choose dehumidify with equipment in the service menu dehumidification setting.

Airflow and comfort setting switches

See separate section.

AC/HP switch

The AC/HP switch configures the control to operate correctly with an air conditioner (ON position) or heat pump (OFF position). With the switch in the ON position, the control will treat any Y call as a cooling call only. With the switch in the OFF position, a Y call is treated as a heat pump heating call unless accompanied by an O (reversing valve) call.

However, if the control is in S1 mode, a Y call with an O/B call is treated as a heat pump heating call. This tells the control whether the system is in the heating or cooling mode and energizes the 24 VAC HUM output when the blower is on and a heating call is present.

Table 4: Pushbutton operation

Duration of connections (s)	Control behavior with no thermostat signals present	Control behavior with thermostat signals present
< 2	Display operational mode (MODEL CONFIG) (5 s) and heat kit configuration (5 s)	Display CFM sent to the indoor blower (5 s)
	Display current/stored fault codes if present	Bypass ASCD (Reduce timer to zero immediately).
2 to 6	Note: If a fault condition is active, the control continues to display the active fault. It does not display stored faults until the active fault is cleared.	
		Clear active faults except fault codes 01, 02, 03, and 04.
	Clear active faults except fault codes 01, 02, 03, and 04.	
	Set model configuration, but only if the model configuration error fault is currently active and the fault condition is not presently active.	Bypass ASCD (reduce the timer to zero immediately).
	Set heat kit configuration, but only if the heat kit configuration error fault is currently active and the fault condition is not presently active.	
> 6	Set S1 configuration, but only if 24 V is applied to the S1 terminal and a fault condition is not presently active.	
70	The below action only occurs if the above faults (model configuration or heat kit configuration) are not active when the pushbutton is held for > 6 s.	
	Clear fault storage. If there is an active fault present, hold the pushbutton twice: once to clear the active fault and once to clear fault storage.	
	Disable S1 functionality, but only if no voltage is applied to the S1 terminal and a fault condition is not presently active.	
> 10	The display toggles between the control software version (5 s) and the tabular/model data software version (5 s).	If an active fault is present, continue to energize the 7-segment displays with the active fault codes.

Status and fault codes

The control includes an LED that displays status and as well as two 7-segment displays to display fault codes. These codes are shown in **Table 5**. The control displays the fault codes until power is removed from the control or the fault condition is no longer present.

Table 5: Fault codes

Fault description	Status LED (AN2)	7-Segment Display 1 (DISP1)	7-Segment Display 2 (DISP2)
No power to control	OFF	_	_
Control normal operation – no call for operation (standby mode)	2 s ON/2 s OFF	_	_
Control normal operation – in ASCD period	0.1 s ON/0.1 s OFF	d	5, 4, 3, 2, 1
Control normal operation – call for fan only and no active fault codes	ON	F	Α
Control normal operation – call for first-stage cooling compressor and no active fault codes	ON	С	1
Control normal operation – call for second-stage cooling compressor and no active fault codes	ON	С	2
Max cool – no faults active	ON	С	3
Control normal operation – call for first-stage heating compressor and no active fault codes	ON	Н	1
Control normal operation – call for second-stage heating compressor and no active fault codes	ON	Н	2
Max heat – no faults active	ON	H	3
Auxiliary heat 1 – call for first-stage auxiliary heating and no active fault codes	ON	Α	1
Auxiliary heat 2 – call for second-stage auxiliary heating and no active fault codes	ON	Α	2
Stage 1 emergency heat (W without Y) – no faults active	ON	E	1
Stage 2 emergency heat (W without Y) – no faults active	ON	Ш	2
Float Switch Active – no faults active	ON	f	I
Software update – control board	ON	b	1
Software update – EE plug	ON	b	2
Software version – control board	ON	1 to 9	1 to 9
Software version – EE plug	ON	1 to 9	1 to 9
Any fault or event code that would prevent the equipment from running	See fault codes		
No fault codes in memory	Two flashes	_	_
Fault code memory cleared	Three flashes	_	_

Table 6: Fault list

Fault/status	Display 1	Display 2	Simplified	Description
Internal control fault	0	Α	Control failure	The control failed and must be replaced.
Model configuration changed	0	1		The dip switches on model configuration do not match the stored model on the control. Hold the push button, with no calls to the control, for 6 s to 9 s, to clear and set the new model. If this error shows, 0 2 also usually show.
			There is a mismatch between the motor and the stored model on the control. A few different things could cause this: 1. The meter is not compatible with the collected model. Change the model.	
				 The motor is not compatible with the selected model. Change the mode under model configuration.
Blower match error	0	2		The motor is not communicating with the control - accompanied by 0 6
				Check your wiring, cycle power on the control, and the motor.
		Configuration faults	 The model configuration is not set - accompanied by 0 1. Hold the push- button for 6 s to 9 s. Ensure there are no calls to the control or the mode does not set. 	
			lauits	There is a mismatch between the heat kit selection dip switches and the stored
Heat kit configuration error 0 3				model on the control. A few different things could cause this:
	0	3		 The dip switches on heat kit selection do not match the stored heat kit on the control. Hold the pushbutton, with no calls to the control, for 6 s to 9 s, to clear and set the new model.
			The heat kit selected under heat kit selection does not match the model stored in the control. Check your model configuration and your heat kit configuration.	
Heat kit staging configuration	1		1	The dip switches on stage 1 kW do not match the stored information on the
changed	0	4		control. Hold the pushbutton, with no calls to the control, for 6 s to 9 s, to clear
				and set the new model. The control is no longer communicating with the HVAC system. If the system is
Comm lost with HVAC system		_		conventional, cycle power. If the system is communication, ensure the main
master	0	0 5	Comm lost	thermostat is powered, check the wiring, and check the main thermostat for
				faults.
			Motor connec-	The control is no longer communicating with the ClimateTalk blower. Check the
Comm lost with motor	0	6	tion lost	wiring between the motor and the control, and check that the motor is getting
				power. The control is experiencing a low voltage condition. It continues with outputs
Low voltage (<19 VAC)	0	7		already engaged, but does not engage new outputs. Check for damaged wiring
,			Low voltage	and brown-out conditions.
		_	error	The control is experiencing a very low voltage condition. The control no longer
Low voltage (<16 VAC)	0	8		keeps outputs engaged and shuts down the system. Check for damaged wiring and brown-out conditions. Lower voltage means the control does not turn on.
Leaving air temperature sensor				The leaving air sensor is open. Check the wiring and check for a damaged sen-
failure (open)	1	3		sor.
Leaving air temperature sensor	1	4		The leaving air sensor is shorted. Check the wiring and check for a damaged
failure (short)	·	·		sensor.
				The leaving air temperature sensor is reporting lower temperatures that may cause condensate in the ductwork and cause damage to equipment. A few dif-
				ferent things could cause this:
Low leaving air temperature in	1	5		Check for a blockage in the ductwork.
cooling				Verify that the airflow for the size of the outdoor unit is correct.
				3. Verify that the outdoor unit is the correct size for the application.
			Leaving air	4. Verify there is nothing obstructing the fan.
			temperature	The leaving air temperature sensor is reporting higher temperatures that may
			sensor error	cause damage to equipment. A few different things could cause this:
High leaving air temperature in	1	6		Check for a blockage in the ductwork.
heating	1			2. Verify that the airflow for the size of the outdoor unit is correct.
	1			3. Verify that the heat kit is the correct size for the application.
		ļ		4. Verify there is nothing obstructing the fan.
				The leaving air temperature sensor is reporting higher temperatures that may cause damage to equipment. A few different things could cause this:
	1			Check for a blockage in the ductwork.
High leaving air temperature in heating (heat pump mode)	in 1	7		2. Verify that the airflow for the size of the outdoor unit is correct.
	1			3. Verify that the outdoor unit is the correct size for the application.
				4. Verify that the heat kit is the correct size for the application.
				5. Verify there is nothing obstructing the fan.

Continued on next page

Table 6: Fault list (continued)

Fault/status	Display 1	Display 2	Simplified	Description
Float switch fault activated	1	8	Float switch	The float switch tripped. Check there is not excess water in the drain pan, the
	-	-	fault	drain pan is not clogged, and the float switch is operating correctly.
				The control senses 24 VAC on the O terminal.
Call for reversing valve while in				 If the outdoor unit is a non-HMH7 heat pump, make sure the AC/HP switch is correctly set.
air conditioner mode	2	2		If the outdoor unit is an Air Conditioner, check the wiring.
a coa.a.a				If the outdoor unit is an HMH7 heat pump, ensure that the control is in S1
				functionality. See the S1 Functionality section for more information.
				The control senses 24 VAC on the Y terminal and the W terminal while in air
			Incorrect	conditioner mode.
Call for cooling and indoor heat-	0	4	wiring	If the outdoor unit is a non-HMH7 heat pump, change the AC/HP switch.
ing at the same time	2	4		 If the outdoor unit is an air conditioner, check the wiring to the conventional inputs.
				 If the outdoor unit is an HMH7 heat pump, ensure that the control is in S1
				functionality. See the <i>S1 Functionality</i> section for more information.
				The control senses 24 VAC on the W terminal and the O terminal in heat pump
Call for reversing valve and heat-	2	5		mode. Check the wiring to the conventional inputs.
ing at the same time		3		If the outdoor unit is an HMH7 heat pump, ensure that the control is in S1
				functionality. See the S1 Functionality section for more information.
				The control senses the motor is moving without command.
	_			Check the wiring between the motor and the control.
Fan running without a call	3	0		2. Cycle power on both the motor and the control.
				3. Verify there is nothing moving the blower besides the motor attached to
				this air handler control.
Fan failure 3 1			The control senses the motor is not moving with an active demand.	
	2	4		Check the motor has sufficient power. Check the wiring between the mater and the central
	3	Ĭ.		2. Check the wiring between the motor and the control.
				3. Verify nothing is blocking the blower fan.
				Cycle power to both the motor and the control. The control senses the motor is receiving too high voltage.
				1
Fan - high voltage failure	3	2		 Check the voltage going to the blower motor. Check the wiring of power to the motor.
r arr - mgri voltage randre				Cycle power to the motor and to the control.
				Verify nothing is blocking the blower.
				The control senses the motor is receiving too low voltage.
				Check the voltage going to the blower motor.
Fan - low voltage failure	3	3		Check the wiring of power to the motor.
				Cycle power to the motor and to the control.
			Fan faults	The control senses the motor is receiving too high current.
				Check the power going to the blower motor.
Fan - high current failure	3	4		2. Check the wiring of power to the motor.
Ğ				3. Cycle power to the motor and to the control.
				4. Verify nothing is blocking the blower.
				The control senses the motor is receiving too low current.
Fan Jawassmant failum	_	_		Check the power going to the blower motor.
Fan - low current failure	3	5		2. Check the wiring of power to the motor.
				3. Cycle power to the motor and to the control.
				The control senses the motor's internal temperature is too high.
				1. Verify the airflow set on the air handler control is correct for the air handler
Fan - high temperature failure	3	3 6		model, heat kit, and staging.
				2. Ensure nothing is blocking the blower.
				Cycle power on the motor and the control.
]			The control senses the motor's internal temperature is too low.
		_		1. Verify the airflow set on the air handler control is correct for the air handler
Fan - low temperature failure	3	7		model, heat kit, and staging.
				2. Ensure nothing is blocking the blower.
Continued on next page				3. Cycle power on the motor and the control.

Continued on next page

Table 6: Fault list (continued)

Fault/status	Display 1	Display 2	Simplified	Description
				The control senses the motor has a lost rotor fault.
Fan - lost rotor	3	8		Ensure nothing is blocking the blower.
				2. Cycle power on the motor and the control.
				The control delivers incomplete data to the motor.
Fan incomplete peremeter	3	9		Check wiring between the control and the motor.
Fan - incomplete parameter	3	9		2. Check the EE plug is firmly seated into the control.
				3. If the issue persists, cycle power to the control and the motor.
			Fan faults	1. The control delivers a parameter change at the wrong time to the motor.
Fan - undesired parameter	4	0		Check wiring between the control and the motor.
change	4	U		Check the EE plug is firmly seated into the control.
				3. If the issue persists, cycle power to the control and the motor.
				The motor hits the fault limit and no longer runs.
Fan - fault limit lockout	4	1		Check the fault list on the control and troubleshoot those faults.
i aii - iauit iiiiit lockout	4	'		When these faults have been checked, cycle power to the motor and control.

HUM OUT output

The HUM OUT output drives an external relay or solenoid (24 VAC coil) to control a humidifier. The output energizes when the control has a thermostat call for heating (heat pump or electric heat).

Heat output

The control connects to the heater relays using pins three, four, and five of connector P3. The relay outputs are 24 VAC.

The control energizes the heat relays as shown in **Table 7**.

Table 7: Heat relays

Input	Heat Relay Output
W1	HT1
W2	HT2
W1 and W2	HT1 and HT2

Depending on the heatkit installed in the air handler, the control provides the flexibility to configure the amount of heat delivered with the first stage heating call. As an example, when the control's W1 input is connected to the room thermostat's first stage heat signal, a call for first stage heat energizes one heating element (HT1). If the control's W2 input is connected to the room thermostat's first stage heat signal, a call for first stage heat energizes one heating element (HT2). With either configuration, the control energizes two heating elements (HT1 and HT2) when it receives a first and second stage heat input from the thermostat.

Heat kit outputs based on thermostat inputs can be configured differently if required, using the stage 1 kW dip switches located in the SW3 switch bank. With the switches in 00 (OFF, OFF) or 01 (OFF, ON), W1 input = HT1 output. If the switches are in the 10 (ON, OFF) position, W1 input = HT2 output. If the switches are in the 11 (ON, ON) position, W1 input = HT1 and HT2 output. See **Table 15** for switch settings.

Wiring related faults

If the control receives a simultaneous call for electric heating and cooling (fault code 24), the control locks out and does not condition.

Section IX: Airflow and comfort setting selection

Model configuration

The six model configuration switches come factory-set in the 0 (off) position. The unit model is programmed into the control board at the factory. If the model configuration switches get changed inadvertently from the factory (off) position to a different position, you must set the unit model configuration.

Note: There must be no active thermostat calls while the model configuration is being set or the change does not save.

See **Figure 21** and change the model configuration switches to the positions matching the air handler model shown on the unit rating plate. Apply power to the equipment and hold the control push button down for 6 s to 9 s.

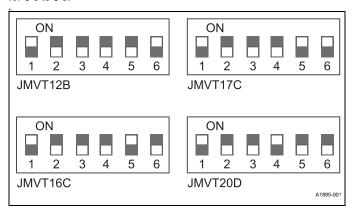


Figure 21: DIP switch settings by model

Airflow selection

When not using communicating functionality, you must set the airflow and comfort setting selection switches correctly at the time of installation for correct system operation. Place switches in the correct locations based on the information shown in **Table 24**. An example of switch positions is shown below in **Figure 22**. 0 indicates the OFF position and 1 indicates the ON position. The airflow configuration switches are located in the SW4 switch bank.

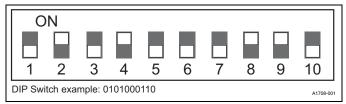


Figure 22: DIP-10

Inputs to the air handler control board pass to the motor, which determines the target CFM to deliver. The following inputs produce the CFM shown in the appropriate table and selected tap settings.

NOTICE

Incorrect airflow and comfort settings may result in decreased system efficiency and performance.

These variable speed air handlers are designed to deliver constant airflow (CFM) regardless of the external static pressure (ESP) in the ductwork.

Therefore, if too many supply registers are closed, a filter becomes clogged, or there is a restriction in the ductwork, the motor automatically operates at a higher speed to compensate for the higher ESP. This may result in a higher operating sound level and motor damage.

Setting cooling or heat pump heating airflow:

Refer to the outdoor unit *Technical Guide* for the appropriate airflow with the matching indoor coil. See **Table 24** for the possible high speed cooling and heat pump heating airflow selections.

Find the appropriate system airflow in **Table 24** for the installed air handler model and outdoor unit. LOW COOL and HIGH COOL each have three switch positions to set.

Set LOW COOL on switches 3, 4, and 5 on the SW4 switch bank. Set HIGH COOL on switches 6, 7, and 8 on the SW4 switch bank. The control is factory set for HP applications. For AC applications, change the AC/HP dip switch located in the SW5 switch bank to the 1 (ON) position.

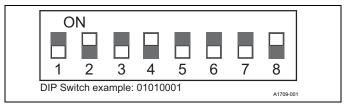


Figure 23: DIP-8

Setting continuous fan airflow:

The CONT FAN switches can be adjusted to increase airflow during a fanonly call. See **Table 8**, which shows values as a percentage of maximum airflow.

Table 8: Continuous fan switches

CONT FAN	% of maximum airflow
00	40
01	60
10	80
11	100

Setting electric heatkit airflow:

The blower speed required for first and second stage electric heat is different from cooling or heat pump heating. See **Table 12** and **Table 13** for minimum required airflow based on the installed heat-kit accessory and its switch positions. Each heat-kit selection has six different switch positions to set.

The first two switch settings are switches 1 and 2, listed as HEAT in the airflow configuration SW4 switch bank. The next four switch settings are switches 3, 4, 5, and 6, listed as HEATKIT SELECTION in the aux heat configuration SW3 switch bank. See **Figure 24** for the location of these switches.

Change the switch positions according to the unit model and accessory heat kit installed, where 0 = OFF and 1 = ON.

Blower ramp-up/ramp-down:

To minimize the sound made by the blower when it speeds up or slows down, the blower slowly ramps up or down from one speed to another. Changes in blower speed during A/C or heat pump heating can take up to 30 s. Changes in blower speed during electric resistance heating can take up to 15 s.

Comfort settings

Table 9: Comfort setting selection

Delay tap	Comfort setting
A = 00	Normal
B = 01	Humid
C = 10	Dry
D = 11	Temperate

Normal

The normal setting provides a ramp-up from zero airflow to full capacity and a ramp-down from full capacity back to zero airflow.

Humid

The humid setting is best suited for installations where the humidity is frequently very high during cooling season. On a call for cooling, the blower ramps up to 50% of full capacity and stays there for 2 min, then ramps up to 82% of full capacity and stays there for 5 min, and then ramps up to full capacity, where it stays until the wall thermostat setpoint is reached.

Dry

The dry setting is best suited to locations where excessive humidity is not generally a problem, where the summer months are usually dry. On a call for cooling the motor ramps up to full capacity and stays there until the thermostat setpoint is reached. At the end of the cooling cycle, the blower ramps down to 50% of full capacity, where it stays for 60 s, then ramps down to zero.

Temperate

The temperate setting is best suited for most locations, where neither excessive humidity nor extremely dry conditions are the norm. On a call for cooling, the motor ramps up to 63% of full capacity and stays there for 90 s, then ramps up to full capacity. At the end of the cooling cycle, the motor ramps down to 63% of full capacity and stays there for 30 s, then ramps down to zero.

Section X: Unit data

Table 10: Physical and electrical data - cooling only

Models		12B	16C	17C	20D			
Blower - diamete	er x width (in.)	11 x 8	11 x 10	11 x 10	11 x 11			
Motor HP		1/2 HP	3/4 HP	1 HP	1 HP			
WIOLOI	Nominal RPM	1050	1050	1050	1050			
Voltage (V)		208/230	208/230	208/230	208/230			
Full load amps a	at 230 V (A)	3.8	5.4	7.0	7.0			
	Туре		Disposable or cleanable					
Filter ¹	Size (in.)	16 x 20 x 1	20 x 20 x 1	20 x 20 x 1	23 x 20 x 1			
	Bottom rack kit	1BR01117	1BR01121	1BR01121	1BR01124			
Shipping / opera	ating weight (lb)	57/56	63/62	166/65	70/69			

^{1.} Field supplied

Table 11: Electrical data - cooling only

Models	Motor FLA ¹	Minimum circuit ampacity (A)	MOP ²
12B	3.8	4.8	15
16C	5.4	6.8	15
17C/20D	7.0	8.8	15

^{1.} FLA = Full Load Amps
2. MOP = Maximum Overcurrent Protection device; must be HACR type circuit breaker or time delay fuse. Refer to the latest edition of the National Electric Code or in Canada the Canadian electrical Code and local codes to determine correct wire sizing

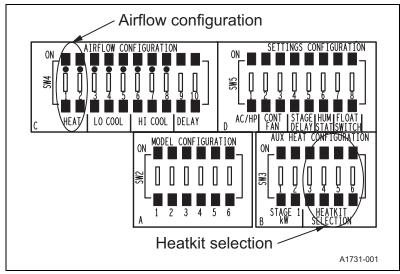


Figure 24: Variable speed board dip switch locations - heat kit

Table 12: Electrical heat: minimum fan CFM DIP switch settings for single-phase heat kits

1141-14		Air handler models								
Heater kit	Nominal kW	12	12B 16C		6C	17C		20D		
models ^{1,2}	at 240 V				Indoor co	oil match				
	ut 240 V	XAF	XAH	XAF	XAH	XAF	XAH	XAF	XAH	
8HK(0,1)6500206	2.4	00-0001	00-0001	00-0001	00-0001	00-0001	00-0001	00-0001	00-0001	
8HK(0,1)6500506	4.8	00-0010	01-0010	00-0010	00-0010	00-0010	00-0010	00-0010	00-0010	
8HK(0,1)6500806	7.7	00-0011	01-0011	00-0011	00-0011	00-0011	00-0011	00-0011	00-0011	
8HK(0,1)6501006	9.6	00-0100	00-0101	00-0100	00-0100	00-0100	00-0100	00-0100	00-0100	
8HK(1,2)6501506	14.4	00-0101	01-0101	00-0101	00-0101	01-0101	01-0101	00-0101	01-0101	
8HK(1,2)6502006	19.2	00-0110	00-0110	01-0110	01-0110**	00-0110	00-0110	00-0110	00-0110	
8HK(1,2)6502506	24		_	_	_	_	_	00-0111	00-0111	

 $^{1.(0,1) - 0 = \}text{no service disconnect or } 1 = \text{with service disconnect.}$

Note: The values in the table are represented as two digits followed by four digits. The first two digits represent the airflow configuration - heat DIP switch settings. The last four digits represent the aux heat configuration - heat kit selection DIP switch settings.

Table 13: Electrical heat: minimum fan CFM for three-phase heat kits

		Airflow	Aux heat			Air	handler m	odels (CF	M ³)		
Heater kit	Nominal	heat dip	configuration heat kit	12	B	16	SC .	17	C 2	20	D
models ^{1,2}	at 240 V	•	selection dip			Indoor coil match					
	""		switch setting	XAF	XAH	XAF	XAH	XAF	XAH	XAF	XAH
8HK06501025	9.6	00	1000	00-1000	00-1000	00-1000	00-1000	00-1000	00-1000	00-1000	00-1000
8HK06501525	14.4	00	1001	00-1001	01-1001	00-1001	01-1001	01-1001	01-1001	00-1001	00-1001
8HK16502025	19.2	00	1010	00-1010	00-1010	01-1010	01-1010	00-1010	00-1010	00-1010	00-1010
8HK16502525	24	00	1011	-	-	_	-	_	_	00-1011	00-1011

^{1.} (0,1) - 0 = no service disconnect or 1 = with service disconnect.

^{2. (1,2) - 1 =} with service disconnect, no breaker jumper bar or 2 = with service disconnect and breaker jumper bar.

^{2. (1,2) - 1 =} with service disconnect, no breaker jumper bar or 2 = with service disconnect and breaker jumper bar.

^{3.} For minimum fan CFM, if there are two values present, the first value is low-stage CFM (W1) and the second value is full-stage CFM (W1+W2). If higher kW/CFM is needed for low-stage, see Table 15 and the heat output section of this manual.

^{*} To increase airflow by approximately 20%, adjust the HEAT switches 1 and 2, located in the airflow configuration SW4 switch bank, from 00 to 01.

Table 14: Electrical heat only: default fan speeds for FER compliance

Models	High sales volume	Nominal kW		Default blo	wer speeds	
Wiodeis	heat kit models ^{1,2,3}	at 240 V	W1/[W1+W2]	Heat	Max air flow	Continuous fan
12B	8HK(0,1)6500806	7.7 kW	W1	01-0011	111 (High)	01
16C	8HK(1,2)6501506	14.4 kW	W1+W2	01-0100	111 (High)	01
17C	8HK(1,2)6501506	14.4 kW	W1+W2	01-0110	111 (High)	01
20D	8HK(1,2)6501506	14.4 kW	W1+W2	00-0101	111 (High)	01

^{1.} (0,1) - 0 = no service disconnect or 1 = with service disconnect.

Table 15: Aux heat configuration - stage 1 kW dip switch settings

W1 = W1	00, 01
W1 = W2	10
W1 = W1+W2	11

Table 16: Application factors - rated CFM versus actual CFM

% of rated airflow (CFM)	80	90	100	110	120
Capacity factor	0.96	0.98	1.00	1.02	1.03

Table 17: kW and MBH conversions - for total power input requirement

For a power distribution voltage that is different from the provided nominal voltage, multiply the kW and MBH data from **Table 18** by the conversion factor in the following table.

Distribution power (V)	Nominal voltage (V)	Conversion factor
208	240	0.75
220	240	0.84
230	240	0.92

Table 18: Electric heat performance data: 208/230-1-60 and 208/230-3-60

	Heater	Nominal kW		Total	heat ³			kW st	aging	
	models ^{1,2}	at 240 V	k'	W	M	ЗН	W1 (only	W1 ar	nd W2
	illouels /	at 2-10 V	208 V	230 V	208 V	230 V	208 V	230 V	208 V	230 V
	8HK(0,1)6500206	2.4	1.8	2.2	6.2	7.5	1.8	2.2	1.8	2.2
	8HK(0,1)6500506	4.8	3.6	4.4	12.3	15	3.6	4.4	3.6	4.4
Single	8HK(0,1)6500806	7.7	5.8	7.1	19.7	24.1	5.8	7.1	5.8	7.1
phase	8HK(0,1)6501006	9.6	7.2	8.8	24.6	30.1	7.2	8.8	7.2	8.8
priasc	8HK(1,2)6501506	14.4	10.8	13.2	36.9	45.1	3.6	4.4	10.8	13.2
	8HK(1,2)6502006	19.2	14.4	17.6	49.2	60.2	7.2	8.8	14.4	17.6
	8HK(1,2)6502506	24	18	22	61.5	75.2	7.2	8.8	18	22
	8HK06501025	9.6	7.2	8.8	24.6	30.1	7.2	8.8	7.2	8.8
Three	8HK06501525	14.4	10.8	13.2	36.9	45.1	10.8	13.2	10.8	13.2
phase	8HK16502025	19.2	14.4	17.6	49.2	60.2	7.2	8.8	14.4	17.6
	8HK16502525	24	18	22	61.5	75.2	9	11	18	22

^{1.} (0,1) - 0 = no service disconnect or 1 = with service disconnect.

Table 19: Electrical data for single source power supply: 208/230-1-60

		Heater		Field	wiring	
Air handler models	Heater models ^{1,2}	amps (A)	Minimum circ	uit ampacity (A)	МОР	³ (A)
		at 240 V	208 V	230 V	208 V	230 V
	8HK(0,1)6500206	10	15.6	16.7	20	20
	8HK(0,1)6500506	20	26.4	28.7	30	30
12B	8HK(0,1)6500806	32	39.6	43.3	40	45
120	8HK(0,1)6501006	40	48.0	52.6	50	60
	8HK(1,2)6501506	60	69.7	76.5	70	80
	8HK(1,2)6502006	80	91.3	100.4	100	110
	8HK(0,1)6500206	10	17.6	18.7	20	20
	8HK(0,1)6500506	20	28.4	30.7	30	35
16C	8HK(0,1)6500806	32	41.6	45.3	45	50
100	8HK(0,1)6501006	40	50.0	54.6	50	60
	8HK(1,2)6501506	60	71.7	78.5	80	80
	8HK(1,2)6502006	80	93.3	102.4	100	110

Continued on next page

^{2. (1,2) - 1 =} with service disconnect, no breaker jumper bar or 2 = with service disconnect and breaker jumper bar.

^{3.} For 16C, 17C, and 20D models with 15 kW (8HK*65015**) heat kit, connect the AHU W1 and W2 thermostat inputs together for FER compliance.

^{2. (1,2) - 1 =} with service disconnect, no breaker jumper bar or 2 = with service disconnect and breaker jumper bar.

^{3.} For different power distributions, see Table 17.

Table 19: Electrical data for single source power supply: 208/230-1-60 (continued)

		Heater		Field	wiring	
Air handler models	Heater models ^{1,2}	amps (A)	Minimum circ	uit ampacity (A)	МОР	³ (A)
		at 240 V	208 V	230 V	208 V	230 V
	8HK(0,1)6500206	10	19.6	20.7	20	25
	8HK(0,1)6500506	20	30.4	32.7	35	35
17C	8HK(0,1)6500806	32	43.6	47.3	45	50
170	8HK(0,1)6501006	40	52.0	56.6	60	60
	8HK(1,2)6501506	60	73.7	80.5	80	90
	8HK(1,2)6502006	80	95.3	104.4	100	110
	8HK(0,1)6500206	10	19.6	20.7	20	25
	8HK(0,1)6500506	20	30.4	32.7	35	35
	8HK(0,1)6500806	32	43.6	47.3	45	50
20D	8HK(0,1)6501006	40	52.0	56.6	60	60
	8HK(1,2)6501506	60	73.7	80.5	80	90
	8HK(1,2)6502006	80	95.3	104.4	100	110
	8HK(1,2)6502506	100	116.9	128.3	125	150

Table 20: Electrical data for multi-source power supply: 208/230-1-60

				Minimu	ım circu	it ampa	city (A)				MOP	² (A)		
Air	Heater	Heater		208 V			230 V			208 V			230 V	
handlers models	models ¹	amps (A) at 240 V			Cir	cuit					Cir	cuit		
moudio		ut 2 10 1	First ²	Second	Third	First ²	Second	Third	First ²	Second	Third	First ²	Second	Third
12B	8HK16501506	60	26.2	43.5		28.4	48.1	_	30	45	_	30	50	
120	8HK16502006	80	48.0	43.3	1	52.6	47.8		50	45	_	60	50	
16C	8HK16501506	60	28.2	43.5	1	30.4	48.1		30	45		35	50	
100	8HK16502006	80	50.0	43.3	1	54.6	47.8		50	45		60	50	
17C	8HK16501506	60	30.2	43.5	1	32.4	48.1		35	45	-	35	50	
170	8HK16502006	80	52.0	43.3	1	56.6	47.8		60	45	-	60	50	
	8HK16501506	60	30.2	43.5	_	32.4	48.1	_	35	45	_	35	50	-
20D	8HK16502006	80	52.0	43.3	1	56.6	47.8		60	45		60	50	
	8HK16502506	100	52.0	43.3	21.6	56.6	47.8	23.9	60	45	25	60	50	25

Table 21: Electrical data for single source power supply: 208/230-3-60

		Heater		Field v	wiring	
Air handler models	Heater models ¹	amps (A)	Minimum circu	it ampacity (A)	МОГ	P ² (A)
		at 240 V	208 V	230 V	208 V	230 V
	8HK06501025	23.1	29.7	32.4	30	35
12B	8HK06501525	34.6	42.2	46.2	45	50
	8HK06502025	46.2	54.7	60.0	60	60
	8HK06501025	23.1	31.7	34.4	35	35
16C	8HK06501525	34.6	44.2	48.2	45	50
	8HK06502025	46.2	56.7	62.0	60	70
	8HK06501025	23.1	33.7	36.4	35	40
17C	8HK06501525	34.6	46.2	50.2	50	60
	8HK06502025	46.2	58.7	64.0	60	70
	8HK06501025	23.1	33.7	36.4	35	40
20D	8HK06501525	34.6	46.2	50.2	50	60
200	8HK06502025	46.2	58.7	64.0	60	70
	8HK06502525	57.7	71.2	77.8	80	80

^{1.} The 20kW and 25kW heater models (8HK16502025 and 8HK16502525) come with circuit breakers standard. Single source power MCA and MOP requirements are given here only for reference if used with field installed single point power modification.

2. MOP = Maximum overcurrent protection device; must be HACR type circuit breaker or time delay fuse. The first circuit includes blower motor amps. Refer to the lat-

 ^{1. (0,1) - 0 =} no service disconnect or 1 = with service disconnect.
 2. (1,2) - 1 = with service disconnect, no breaker jumper bar or 2 = with service disconnect and breaker jumper bar.
 3. MOP = Maximum Overcurrent Protection device; must be HACR type circuit breaker or time delay fuse. Refer to the latest edition of the National Electric Code or in Canada the Canadian electrical Code and local codes to determine correct wire sizing.

^{1.8}HK1 = with service disconnect, no breaker jumper bar
2. MOP = Maximum Overcurrent Protection device; must be HACR type circuit breaker or time delay fuse. The first circuit includes blower motor amps. Refer to the latest edition of the National Electric Code or in Canada the Canadian electrical Code and local codes to determine correct wire sizing.

est edition of the National Electric Code or in Canada the Canadian electrical Code and local codes to determine correct wire sizing.

Table 22: Electrical data for multi-source power supply: 208/230-3-60

			Minir	num circu	it ampaci	ity (A)		МОР	² (A)	
Air handlers	Heater	Heater amps (A)	20	8V	23	0V	20	8V	23	0V
models	models ¹	at 240V		Circ	cuit			Circ	uit	
			First ²	Second	First ²	Second	First ²	Second	First ²	Second
12B	8HK16502025	46.2	29.7	25.0	32.4	27.6	30	25	35	30
16C	8HK16502025	46.2	31.7	25.0	34.4	27.6	35	25	35	30
17C	8HK16502025	46.2	33.7	25.0	36.4	27.6	35	25	40	30
20D	8HK16502025	46.2	33.7	25.0	36.4	27.6	35	25	40	30
200	8HK16502525	57.7	40.0	31.2	43.3	34.5	40	35	45	35

Table 23: Aux heat configuration - heat kit selection

				High/low spe	eed heat CFM			
DIP switch setting	12	2B	16	SC .	1	7C	20)D
	High	Low	High	Low	High	Low	High	Low
0001	625	625	825	825	825	825	825	825
0010	650	650	825	825	825	825	825	825
0011	750	750	1100	1100	1100	1100	1150	1150
0100	750	750	1100	1100	1100	1100	1500	1500
0101	975	650	1100	825	1100	825	1700	825
0110	975	750	1300	1100	1300	1100	1700	1500
0111	1	_	1	_	_	_	1800	1500

Notes:

- Dry coil conditions only, tested without filters
- For optimal performance, external static pressures of 0.2 in. W.C. to 0.5 in. W.C. are recommended. Heating applications tested at 0.5 in. W.C. external static pressures. sure. Above 0.5 in. W.C., CFM is reduced by 2% per 0.1 in. increase in static.
- When operating in both heat pump and electric heat modes, the airflow (CFM) will be based on the heat tap CFM values only.
- At some settings, low cool and low heat airflow may be lower than what is required to operate an airflow switch on certain models of electronic air cleaners. Consult the instructions for the electronic air cleaner for further details.
- Airflow (CFM) indicator light (LED2) flashes once for every 100 CFM (for example, 12 flashes is 1200 CFM) blinks are approximate ±10% of actual CFM.

Table 24: Airflow data (CFM)

			High/lov	v speed coolin	g and heat pu	mp CFM		
DIP switch setting	12	2B	10	SC .	17	7C	20	D
	High	Low	High	Low	High	Low	High	Low
000	800	550	1100	700	1150	725	1500	925
001	900	600	1200	750	1250	775	1475	1050
010	975	650	1300	800	1350	850	1750	1125
011	1075	700	1400	850	1450	900	1875	1225
100	1150	775	1500	925	1575	975	2000	1350
101	1250	825	1625	975	1675	1025	2000	1400
110	1325	900	1725	1050	1775	1100	2000	1475
111	1400	950	1825	1100	1875	1150	2000	1575

Notes:

- Air handler units have been tested to UL 60335-2-40/CSA 22.2 No. 236 standards up to 0.6 in. W.C. external static pressure.
- Dry coil conditions only, tested without filters
- For optimal performance, external static pressures of 0.2 in. W.C. to 0.5 in. W.C. are recommended. Heating applications tested at 0.5 in. W.C. external static pressure. Above 0.5 in. W.C., CFM is reduced by 2% per 0.1 in. increase in static.
- Low speed cooling used only with two stage outdoor units. Speed is preset to 65% of high speed.
- Dehumidification speed is 85% of jumper selected cool tap and adjust tap.
- When operating in both heat pump and electric heat modes, the airflow (CFM) will be based on the heat tap CFM values only.
- At some settings, low cool and low heat airflow may be lower than what is required to operate an airflow switch on certain models of electronic air cleaners. Consult the instructions for the electronic air cleaner for further details.
- Airflow (CFM) indicator light (LED2) flashes once for every 100 CFM (for example, 12 flashes is 1200 CFM) blinks are approximate ±10% of actual CFM.

^{1.} The 20kW and 25kW heater models (8HK06502025 and 8HK06502525) come with service disconnects standard.
2. MOP = Maximum overcurrent protection device; must be HACR type circuit breaker or time delay fuse. The first circuit includes blower motor amps. Refer to the latest edition of the National Electric Code or in Canada the Canadian electrical Code and local codes to determine correct wire sizing.

Section XI: Maintenance

Inspect filters at least once per month, and clean or replace them when they become dirty. The frequency of cleaning depends upon the hours of operation and the local atmospheric conditions. Clean filters keep unit efficiency high.

Coil cleaning

A CAUTION

Ensure adequate precautions are taken to protect electrical components from liquid.

If cleaning the coil is necessary, clean with water only.

As an alternative to water, Evap-Green by Nu-Calgon is the only pH neutral coil cleaner approved for use when it is correctly diluted.

Ensure to thoroughly rinse the cleaned coils after using Evap-Green.

Lubrication

The bearings of the blower motor are permanently lubricated.

Condensate drains

During the cooling season, check the condensate drain lines to be sure that condensate is flowing from the primary drain but not from the secondary drain.

If condensate ever flows from the secondary drain, shut off the unit immediately and clean the condensate pan and drains to insure a free flowing primary drain.

Section XII: Air system adjustment

To check the cubic feet per minute (CFM), measure the external duct static using a manometer and static pressure tips. To prepare coil for static pressure measurements, run only the fan to ensure a dry coil.

NOTICE

See Table 24 for air handling unit airflow data (CFM).

See **Table 24** to determine the airflow and make the necessary adjustments to keep the CFM within the airflow limitations of the coil.

External duct static

To determine total external system static pressure, complete the following:

- Drill a hole 12 in. away from the air handler in the supply air duct. You must take the return air pressure reading between the indoor coil and the air handler.
- Measure the supply air static pressure. Record this positive number
- Measure the return air static pressure. Record this negative number.
- 4. Treat the negative number as a positive, and add the two numbers together to determine the total external system static pressure.

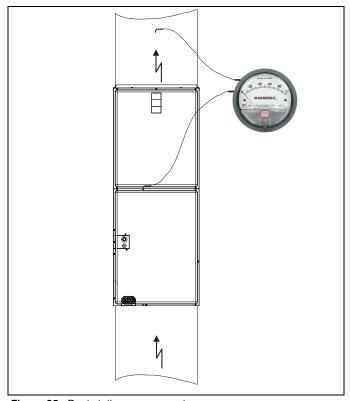


Figure 25: Duct static measurements

Notes

Section XIII: Wiring diagram

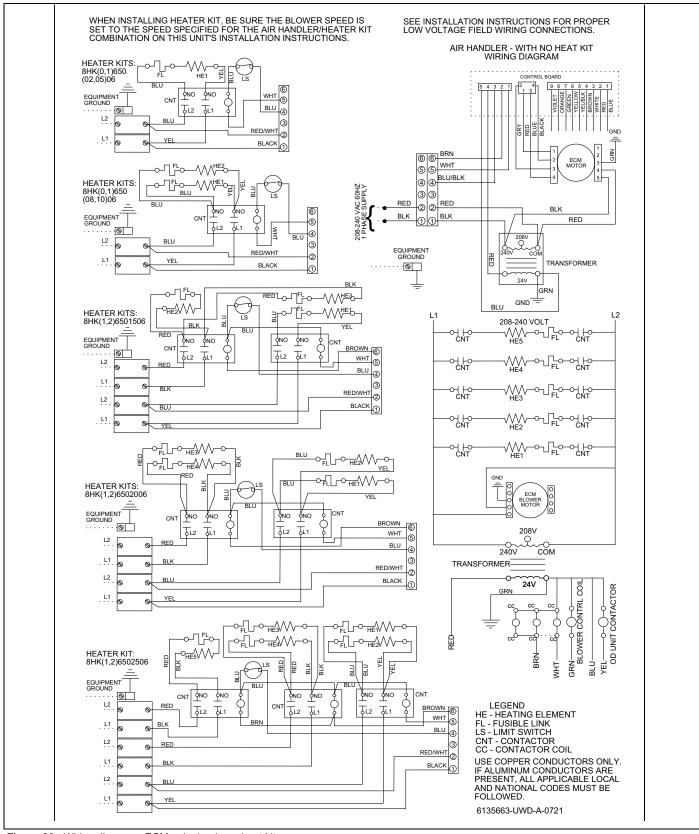


Figure 26: Wiring diagram - ECM - single-phase heat kits

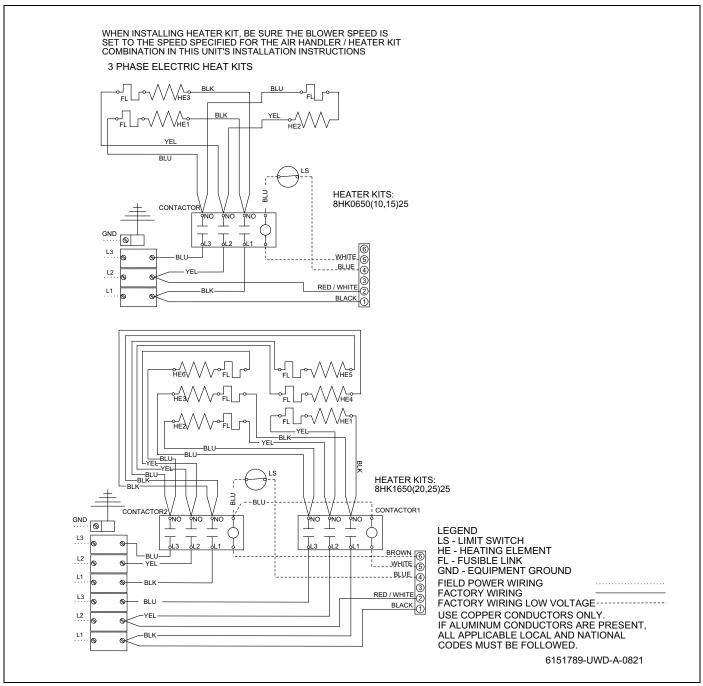


Figure 27: Wiring diagram - 8HK three-phase heat kits 208/230 V

Section XIV: Start-up sheet

		Residential A	rt-up Sh ir Handler with I critical to customer	Electric He		ty
Start-up date	Compai	ny name		Start-up t	echnician	
Owner information				_		
Name		Address			Daytime phone	
City		State or provi	nce		Zip or postal code	
Equipment data						
Unit model number			Unit serial number			
General information	n (check all tha	t apply)				
New construction	•	O Upflor	W	0	Horizontal Left	
○ Retrofit		O Down	flow	0	Horizontal Right	
Unit location and c	onnections (cl	neck all that apply)				
Unit is level	Duct connection	ns are complete:	Supply Ret	turn		
Condensate drain	is connected	correctly (refer to insta	allation manual)	Conder	sate trap is primed	with water
Filters						
Filters installed	Number of f	ilters Filt	ter size			
Electrical connection			hat apply)			
208 VAC Wires and electric	230 VAC		former wired correct	ly for primary	v supply voltage – F	Ground connected
						Ground connected
Line voltage measure			ge value between Ra			
Thermostat wiring Airflow setup	is complete	I nermostat cyc	cle rate or heat antici	pator adjuste	d to installation Mar	nual specifications
All flow setup		Heat	0/1 0	0/1		
	Variable speed	Low cool		•	0/1	
Blower type	ECM	High cool	0/1 0)/1	0/1	
and set-up	(circle 0 or 1)	Delay	0/1 0) / 1		
		Stage 1 kW)/1		
		Heat kit selection			0/1 0/1	0.5
	Standard ECM	HP heating/cooling			O3 O4 O3 O4	<u> </u>
	Standard ECIVI	Electric heat speed Continuous fan spee	_		O3 O4 O3 O4	<u> </u>
Supply static (in. W.C	<u> </u>	7	bulb temperature		Outside air dry bulb	
			·		•	
Return static (in. W.C.			bulb temperature		Return air wet bulb	-
Total external static p		Temperature	drop		Supply air wet bulb	temperature
Other switches (che						
HUMIDISTAT (YES O NO	AC/HP	○ AC ○ HP	CONT F	AN (40% (60	0%
					C	Continued on next page

Number of elements Heating return air dry bulb temperature ob site clean-up	Measured ampera	Heater 4 Heater 1 Heater 1 Heater 4 Heater 4 Heater 4 Heater 4 Heater 4 Heating supply air	Heate Heate Heate	er 5 Heate	r 6
Heating return air dry bulb temperature	Measured voltage	Heater 4 Heater 1 Heater 1 Heater 4 Heater 4 Heater 4 Heater 4 Heater 4 Heating supply air	Heat	er 2 Heate	
Heating return air dry bulb temperature		Heater 4 Heating supply air			r 3
dry bulb temperature ob site clean-up		Heater 4 Heating supply air			
dry bulb temperature ob site clean-up					r 6
ob site clean-up		ما يا ما ما ما ما الما الما الما الما ال		Air temperature rise	
•		dry bulb temperatu	re	All temperature rise	
	1 1: 1		16		
	ned, and indoor and	outdoor debris remo	oved from Job site.		
Tools have been remo					
All panels have been					
Init operation and					
-	_		_	prrecting any problems.	
Operate the unit thro			_		
			_	nd correcting any problems	
	ugh emergency heati	ng cycles from the t	hermostat, noting ar	nd correcting any problems	•
Owner education Provide the owner wi	th the owner's manua	al			
Explain operation of s		41.			
Explain thermostat us		(if applicable) to the	owner		
Explain the important					
comments and add			illent maintenance.		

6146293-UIM-C-0923 Supersedes: 6146293-UIM-B-0123